

BIOCHEMICAL MECHANISMS OF DRUG TOXICITIES

Lance R. Pohl, Pharm.D., Ph.D.
Chief, Section of Molecular and Cellular
Toxicology
Laboratory of Molecular Immunology
pohll@nih.gov
12/20/2007

TYPES OF ADRS

Cardiac

Skin

Renal

Pulmonary

Neurological

Lupus

Hepatic

Anaphylaxis

Hemolytic anemia

Granulocytopenia

Thrombocytopenia

Aplastic anemia

Vasculitis

SEVERITY OF ADRS

- * Minor
- * Severe (SADRs)
 - 6.2-6.7% hospitalized patients in USA
 - over 2 million hospitalized patients
 - 100,000 deaths
 - similar findings in Europe and Australia
 - tens of billions of dollars cost burden

Wilke, et al., Nature Review-Drug Discovery, 904, 2007

LEADING CAUSES OF DEATH IN USA IN 1994

Heart disease	743,460
Cancer	529,904
Stroke	150,108
SADRs	106,000
Pulmonary disease	101,077
Accidents	90,523
Pneumonia	75,719
Diabetes	53,894

Lazarou et al., JAMA, 279, 1208 (1998)

TOXICITIES LEADING TO DRUG WITHDRAWAL 1976-2005 IN USA

- * **Hepatoxicity**, 6 (21%)
- * Torsades, 6 (21%)
- * Cardiotoxicity, 2 (7%)
- * Nephrotoxicity, 2 (7%)
- * Rhabdomyolyis, 2 (7%)
- * Others, 10 (37%)

Wilke, et al., Nature Review-Drug Discovery, 904, 2007

TYPE A ADRs

- * 80% of ADRs
- * Occur frequently
- * Dose-dependent
- * Excessive or diminished pharmacologic effects
- * Drug-drug interactions
- * Often uncovered preclinically

Endres, et al., European Journal of Pharmaceutical Sciences, 27, 501 (2006)

EXAMPLES OF TYPE A ADRS

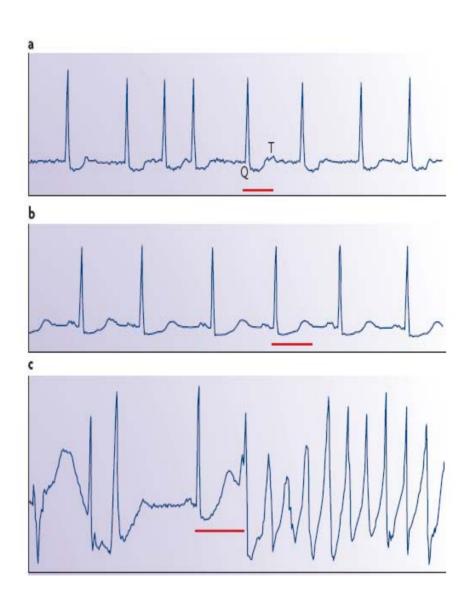
- * Drowsiness from antihistamines
- * Hypotension from anti-hypertensive therapy
- * Excess bleeding from warfarin
- * Posicor
- * Acetaminophen

TYPE B ADRs

- * 20% of ADRs
- Rare, unpredictable, and highly hostdependent
- * Mechanisms often unknown
 - allergic reactions
 - pseudoallergic reactions
 - dysregulation of signalling pathways
 - genetic and environmental factors
- * Rarely reproduced in animals

SADRs CAUSED BY DRUG METABOLIZING ENZYME POLYMORPHISMS

- * Anti-malarial- and sulfonamide-induced hemolytic anemia caused by low G6PD
- * Sensitivity to warfarin by CYP2C9*2 and *3
- * Irinotecan fatal diarrhea and neutropenia caused by UGT1A1*28 and other allelic forms of UGT1A
- * Prolonged neuromuscular blockade by serum choline esterase deficiency


Reider, et al., N.E.J.M., 352, 2285 (2005); Han et al., J. Clin. Oncol., 24, 2237 -2244 (2006); Barta, et al., Mol.Genet.Metab., 74, 484 (2001)

SADRs CAUSED BY DRUG TARGET POLYMORPHISMS

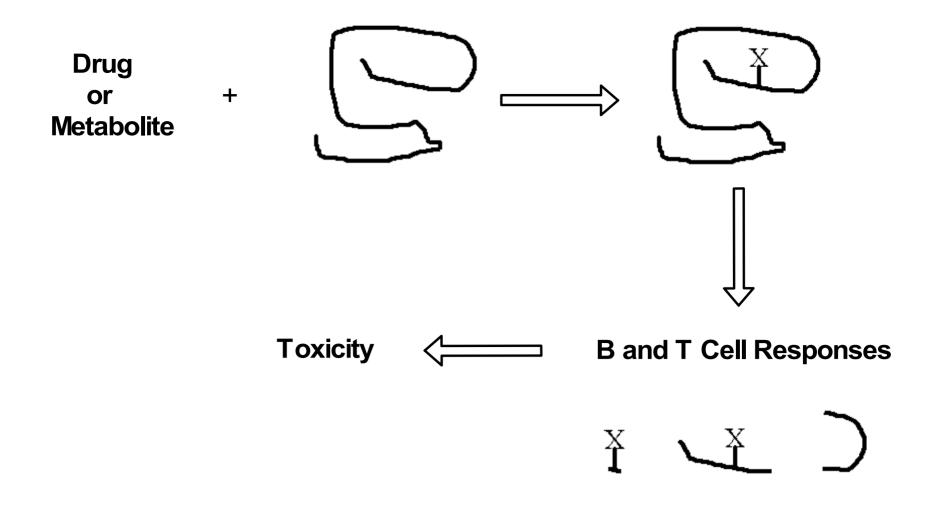
* Warfarin resistance due to vitamin K oxide reductase complex subunit 1 (VKORC1) overexpression

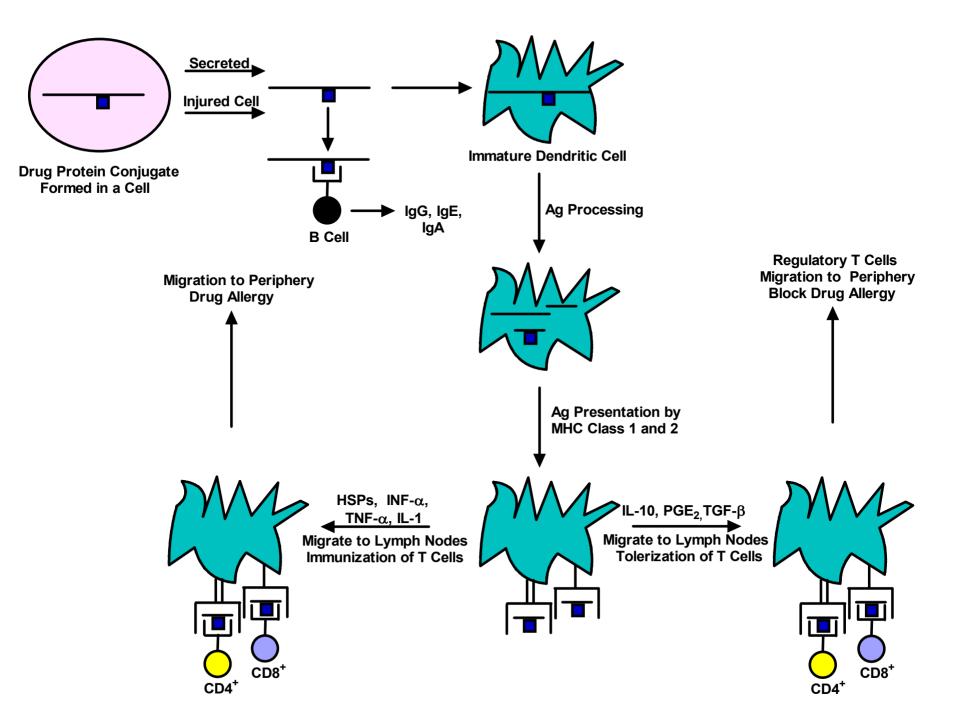
Reider, et al., N.E.J.M., 352, 2285 (2005)

DRUG-INDUCED-LONG QT SYNDROME AND TORSADES DE POINTES

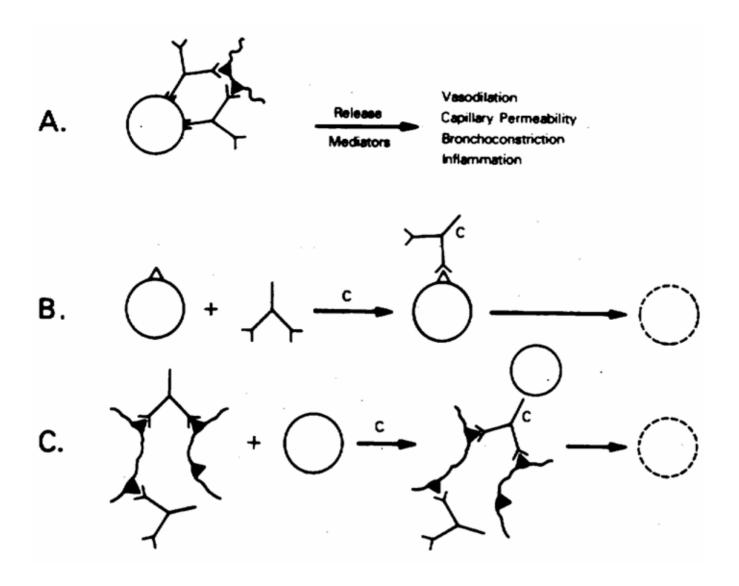
Nature Review-Drug Discovery, 904, 2007

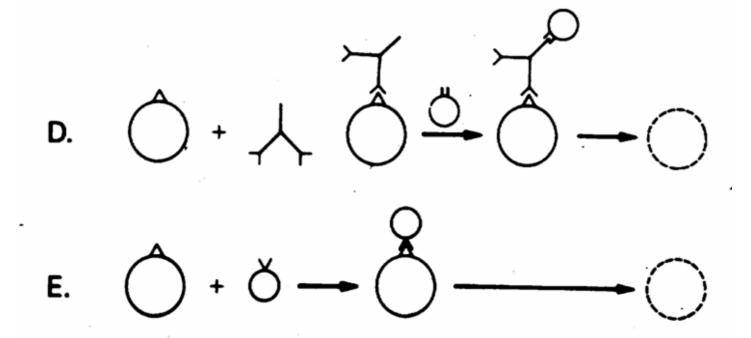
DRUG-INDUCED-LONG QT SYNDROME


- * Structurally diverse drugs cause DLQTS including antiarrhythmics, antihistamines, antipsychotics, antibiotics and others
- * Several withdrawn from the market place including Seldane and Propulsid
- * Blockage of the cardiac potassium channel hERG
- * Inhibition of hERG channel trafficking to plasma membrane


DRUG-INDUCED-LONG QT SYNDROME

* In vitro molecular, cellular, and tissue assays have been developed to measure these interactions


Dennis, et al., Biochemical Society Transactions, 35, 1060 (2007); Meyer, et al., Expert Opin. Drug Metab. Toxicol., 3, 507 (2007)


HAPTEN HYPOTHESIS AND DRUG-INDUCED ALLERGIC REACTIONS

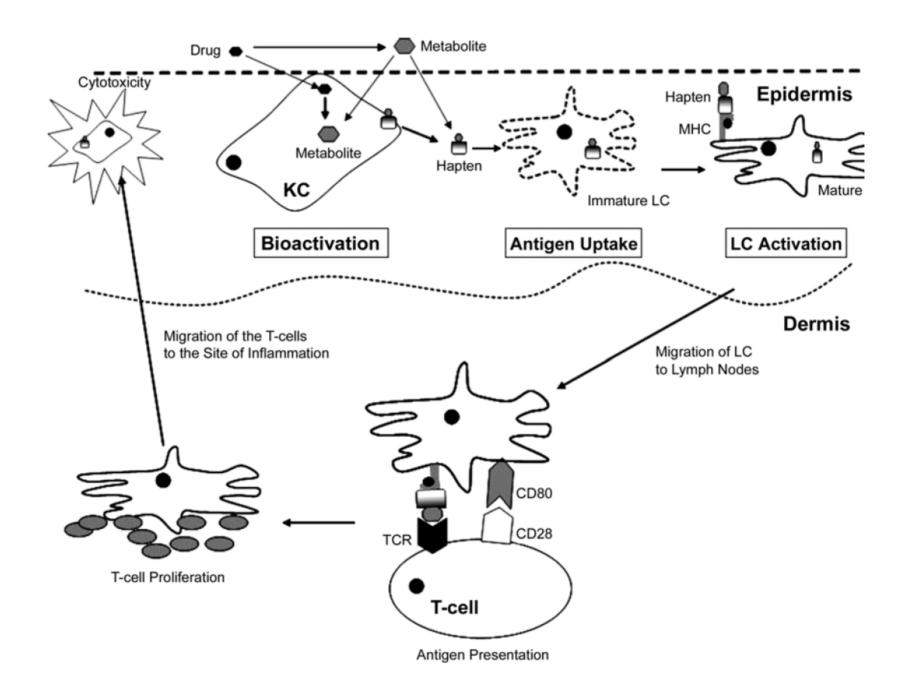
PATHWAYS OF IMMUNOPATHOLOGY

CUTANEOUS DRUG REACTIONS

- * 95% are self-limiting rashes
- * SJS and TEN can be life-threatening with blisters, skin detachment, and mucosa involvement
- * Most appear to be immune-mediated by drug-specific IgE antibodies while many others by CD4+ and CD8+ T cells

Roychowdhury and Svensson, AAPS J., 7, E 434 (2005)

MACULO-PAPULAR EXANTHEM AND TOXIC EPIDERMAL NECROLYSIS



T CELL REACTIVITY TO DRUGS CAUSING CUTANEOUS ADRS

- * Lidocaine
- * Sulfonamides
- * β-Lactam antibiotics
- * Phenytoin
- * Carbamazepine

Lebrec et al., Cell Biology and Toxicology, 15, 57 (1999); Naisbitt, et al., Expert Opin. Drug Saf., 6, 109 (2007); Posadas and Pichler, Clin. Experimental Allergy, 37, 989 (2007)

HLA-B*1502 ASSOCIATED WITH CBZ-INDUCED SJS/TEN

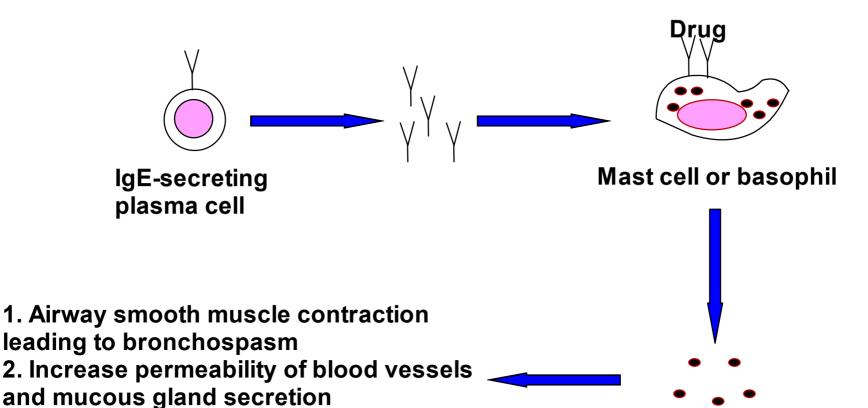
- * Seen in south-east Asians but not in Caucasians
- * 98.3% (59/60) CBZ-SJS/TEN positive
- * 4.2% (6/144) CBZ-tolerant positive
- * High sensitivity/specificity of this test can be used to screen patients receiving CBZ

Chung, et al., Curr. Opin. Allergy Clin. Immunol., 7, 317 (2007)

IgE-MEDIATED ANAPHYLACTIC DRUG REACTIONS

Alcuronium Sulfamethoxazole

Cephalosporins Suxamethonium


Penicillins Thiopentone

Protamine Trimethoprine

Streptokinase Tubocurarine

Park et al., Chem. Res. Toxicol., 11, 969 (1998);Thong and Chan, Ann. Allergy Asthma Immunol., 92, 619 (2004)

MECHANISM OF DRUG-INDUCED ANAPHYLAXIS

3. Inflammation (eosinophils and neutrophils)

4. Respiratory, gastrointestinal, cutaneous, and cardiovascular systems can be involved

Histamine, leukotrienes, and cytokines

DRUG-INDUCED LIVER DISEASE IS A MAJOR HEALTH PROBLEM

It is a major cause of acute liver failure and a major safety reason for:

- * Stopping preclinical development of drugs
- * Terminating clinical trials of drugs
- * Withdrawing drugs postmarketing

DRUGS WITHDRAWN / NOT APPROVED DUE TO LIVER DISEASE

Iproniazid	1956
Ibufenac (Europe)	1975
Ticrynafen	1980
Benoxaprofen	1982
Perhexilene (France)	1985
Dilevalol (Portugal and Ireland)	1990
Bromfenac	1998
Troglitazone	2000
Nefazodone (Serzone)	2003
Ximelagatran (Exanta)	2004

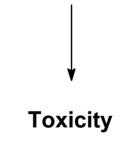
ACETAMINOPHEN LIVER INJURY

MECHANISMS OF APAP LIVER INJURY

- * Protein adducts
- * Reactive oxygen and nitrogen species
- * Mitochondrial injury
- * Apoptosis

FIALURIDINE-INDUCED MITOCHONDRIAL INJURY IN PATIENTS

- * FIAU is a uridine analog developed for hepatitis B treatment
- * Administration to 15 patients resulted in 7 developing severe mitochondrial liver damage with 5 dying and 2 receiving liver transplant
- * Toxicity was not predicted from rodent studies


MECHANISM OF FIAU LIVER INJURY

- * Toxicity of FIAU is apparently due to FIAU-TP which inhibits mitochondrial DNA polymerase-γ and DNA synthesis
- * Humans and not rodents have human nucleoside transporter 1 (hENT1) in the mitochondrial membrane

E.W. Lee, et al., J.Biol.Chem., 281, 16700 (2006)

HALOTHANE-INDUCED ALLERGIC HEPATITIS

Humoral and Cellular Immune Responses

OTHER HALOTHANE DERIVATIVES

Halothane

Isoflurane

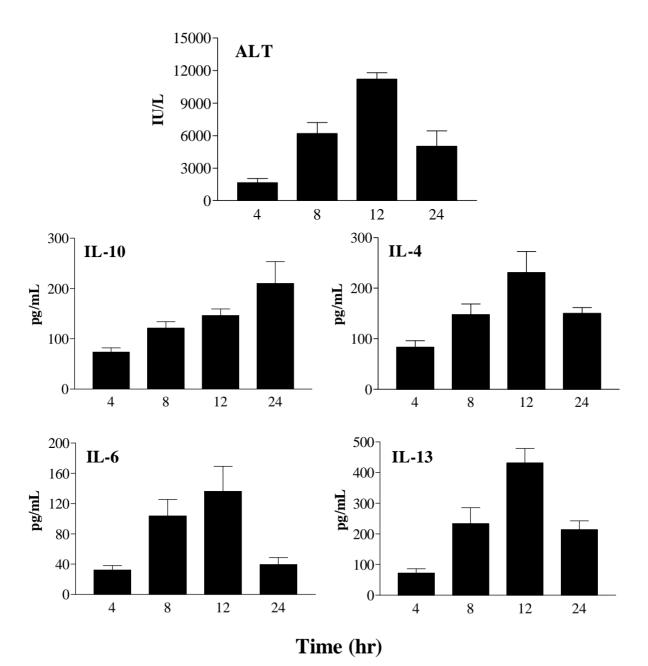
Desflurane

ANTIBODIES ASSOCIATED WITH OTHER DRUGS CAUSING HEPATITIS

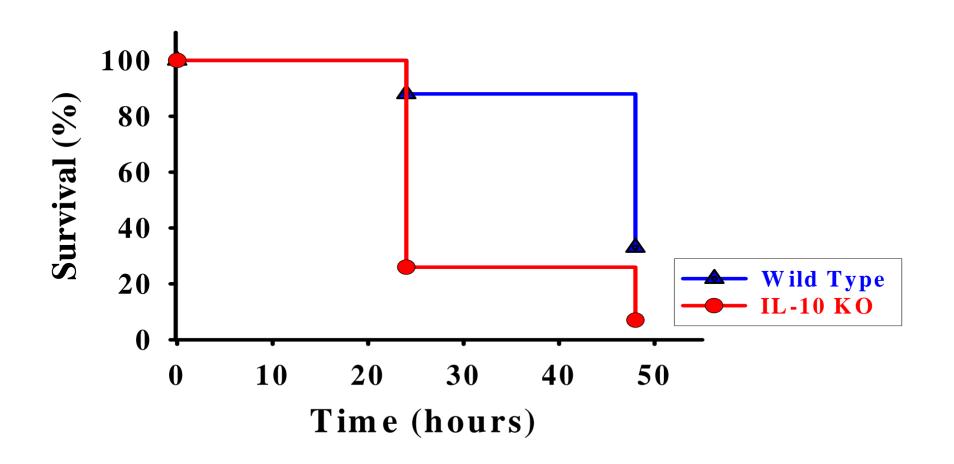
Drug Antigen

Tienilic acid CYP2C9

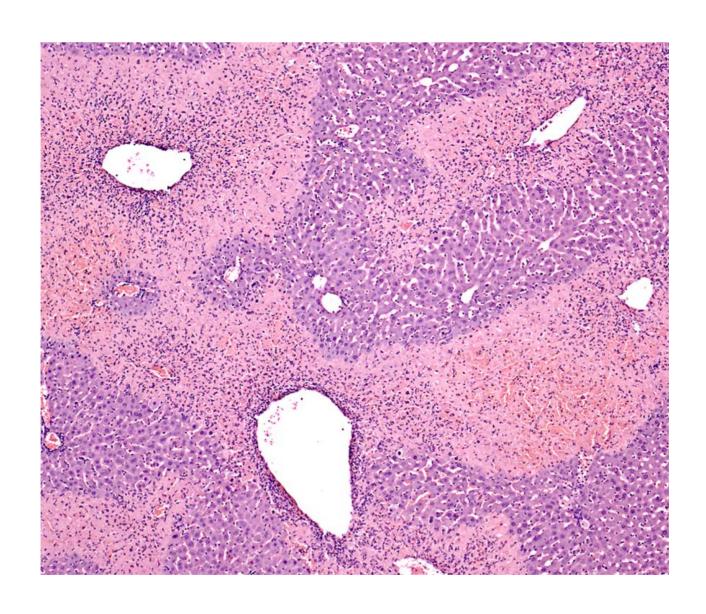
Dihydralazine CYP1A2


Ethanol CYP2E1, CYP3A4, CYP2E1-hydroxy-ethyl radical

T CELL REACTIVITY ASSOCIATED WITH DRUGS CAUSING ALLERGIC HEPATITIS


Cotrimoxazole **Erythromycin** Ketoconazole **Ampicillin Allopurinol Ibuprofen Captopril** α-Methyldopa **Enalapril**

Chlorpromazine **Amineptine Dothiepine Phenytoin** Carbamazepine **Tamoxifen** Glibenclamide Lovastatin **Propylthiouracil**


Gut, 41, 534 (1997)

IL-10 DEFICIENCY INCREASES APAP-INDUCED LIVER INJURY AND DEATH

APAP-LIVER NECROSIS IN IL-10-/- MOUSE

OTHER FACTORS INVOLVED IN AILI

Protective:

- * IL-4, IL-6, IL-13, COX-2, Kupffer cells
- * Nrf2, heme oxygenase 1

Protoxicant:

* IFN-γ, MIF, osteopontin, neutrophils, NK and NKT cells

DRUG-INDUCED LIVER INJURY NETWORK (DILIN)

- * Sponsored by NIDDK in 2004 to develop a registry of DILI patients
- * DILIN centers at U. of North Carolina, Duke, U. of Michigan, U. of Connecticut, and U. of California in SF
- * Samples are collected for biochemical, serological, and genetic testing by investigators throughout the country

Summary

- * Drug-drug interactions are a major cause of Type A ADRs, can be predictable, and lead to SADRs
- * Type B ADRs are a major cause of SADRs, are highly host dependent, and may be caused by rare allelic forms of enzymes, transporters, receptors, ion channels, transcription factors, etc
- * Type B ADRs also appear to be mediated by specific Abs and T cells that are induced by drug-protein adducts

Summary

- * Numerous factors likely protect most people from getting serious Type B ADRs
- * Large scale genomic studies show promise in uncovering susceptibility factors that may be used to screen patients before receiving drugs.
- * Mechanisms of DILI are important
- * Prevent SADRs by limiting drug-protein adduct formation
- * Prevent SADRs by using low doses of drugs

- Incidence of adverse drug reactions in hospitalized patients A metaanalysis of prospective studies, J. Lazarou, *et al.*, J. Am. Med. Assoc. 279, 1200 (1998).
- The epidemiology of serious adverse drug reactions among the elderly, P. A. Atkin, et al., Drug Aging, 14, 141 (1999).
- Postmarketing surveillance and adverse drug reactions Current perspectives and future needs, T. Brewer and G. A. Colditz, J. Am. Med. Assoc. 281, 824 (1999).
- Computerized surveillance of adverse drug reactions in hospital: Implementation, M. Levy, et al., Eur. J. Clin. Pharmacol., 54, 887 (1999).
- Retrospective analysis of the frequency and recognition of adverse drug reactions by means of automatically recorded laboratory signals, I.Tegeder, *et al.*, Brit, J. Clin. Pharmacol. 47, 557 (1999).

- Mechanisms, chemical structures and drug metabolism, L. R. Pohl, et al., Eur. J. Haematol., 57, 98 (1996).
- Allergic and autoimmune reactions to xenobiotics: how do they arise?, P. Griem, et al., Immunol.Today, 19, 133 (1998).
- Role of drug disposition in drug hypersensitivity: A chemical, molecular, and clinical perspective, B. K. Park, *et al.*, Chem. Res. Toxicol., 11, 969 (1998).
- Covalent binding of xenobiotics to specific proteins in the liver, N. R. Pumford *et al.*, Drug Metab. Rev., 29, 39 (1997).
- Halothane-induced liver injury in outbred guinea pigs: Role of trifluoroacetylated protein adducts in animal susceptibility, M. Bourdi *et al.*, Chem. Res. Toxicol., 14, 362 (2001).
- The role of leukocyte-generated reactive metabolites in the pathogenesis of idiosyncratic drug reactions, J. P. Uetrecht, Drug. Metab. Rev., 24, 299 (1992).

- Characterization of the humoral immune response and hepatotoxicity after multiple halothane exposures in guinea pigs, M. Chen and A. J. Gandolfi, Drug Metab. Rev., 29, 103 (1997).
- Human cytochrome P450 2E1 is a major autoantigen associated with halothane hepatitis. M. Bourdi, et al., Chem. Res. Toxicol. 9,1159 (1996).
- Cytochromes P450 and uridine triphosphate glucuronosyltransferases: Model autoantigens to study drug-induced, virusinduced, and autoimmune liver disease, M. P. Manns and P. ObermayerStraub, Hepatology 26. 1054 (1997).
- Structure-activity studies in drug induced anaphylactic reactions, B. A. Baldo and N. H. Pham, Chem. Res. Toxicol., 7, 703 (1994).
- Mechanisms of drug-induced allergic contact dermatitis, H. Lebrec, et al., Cell Biol. Toxicol. 15, 57 (1999).

- Immunoregulatory mechanisms involved in elicitation of allergic contact hypersensitivity, S. Grabbe and T. Schwarz, Immunol. Today, 19, 37 (1998).
- Drug-induced immune hematologic disease, T. DeLoughery, Immunol. Allergy Clin. North Am., 18, 829 (1998).
- Immunohistochemical detection of protein adducts of 2, 4-dinitrochlorobenzene in antigen presenting cells and lymphocytes after oral administration to mice: Lack of role of Kupffer cells in oral tolerance, C. Ju and L. R. Pohl, Chem. Res. Toxicol., 14, 1209 (2001).
- Identification of hepatic protein targets of reactive metabolites of acetaminophen *in vivo* in mice using two dimensional gel electrophoresis and mass spectrometry, Y. Qiu, *et al.*, J. Biol. Chem., 273, 17940 (1998).
- Two-dimensional database of mouse liver proteins: Changes in hepatic protein levels following treatment with acetaminophen or its nontoxic regioisomer 3-acetamidophenol, M. Fountoulakis, et al., Electrophoresis, 21, 2148-2161 (2000).

- Potential role of pharmacogenomics in reducing adverse drug reactions: A systematic review, K. A. Phillips, *et al.*, JAMA, 286,, 2270 (2001).
- Microarrays and toxicology: The advent of toxicogenomics, E. F. Nuwaysir, et al., Molecular Carcinogenesis, 24: 153-159 (1999).
- Toxicologists brace for genomics revolution, R. A. Lovett, Science, 289: 536-537 (2000).
- Toxicogenomics-based discrimination of toxic mechanism in HepG2 human hepatoma cells, M. E. Burczynski, *et al.*, Toxicol. Sci., 58: 399-415 (2000).
- Expression profiling of acetaminophen liver toxicity in mice using microarray technology, T. P. Reilly, *et al.*, Biochem. Biophys. Res. Comm., 282, 321 (2001).

- In silico research in drug discovery, G.C. Terstappen and A. Reggiani, Trends in Pharmacol. Sci., 22, 23 (2001).
- Detection of multiple proteins in an antibody-based protein microarray system, R. P. Huang, J. Immunol. Methods, 255, 1 (2001).
- An introduction to arrays, N. J. Maughan, et al., J. Pathol., 195, 3 (2001).
- Integrated genomic and proteomic analyses of a systematically perturbed metabolic network, T. Ideker, Science, 292, 929 (2001).
- A protective role of cyclooxygenase-2 in drug-induced liver injury in mice, T. P. Reilly, et al., Chem. Res. Toxicol., 1628 (2001).
- Protection against acetaminophen-induced liver injury and lethality by interleukin-10: Role of inducible nitric oxide synthase, M. Bourdi, et al., Hepatology, 35, 289 (2002).
- Protective role of Kupffer cells in acetaminophen-induced liver injury in mice, C. Ju, et al., Chem. Res. Toxicol., 15, 1504 (2002).